Publications

Surface and Bulk Chemistry of Mechanochemically Synthesized Tohdite Nanoparticles

De Bellis, J. and Ochoa-Hernández, C. and Farès, C. and Petersen, H. and Ternieden, J. and Weidenthaler, C. and Amrute, A.P. and Schüth, F.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume: 144 Pages: 9421-9433
DOI: 10.1021/jacs.2c02181
Published: 2022

Abstract
Aluminum oxides, oxyhydroxides, and hydroxides are important in different fields of application due to their many attractive properties. However, among these materials, tohdite (5Al2O3·H2O) is probably the least known because of the harsh conditions required for its synthesis. Herein, we report a straightforward methodology to synthesize tohdite nanopowders (particle diameter ∼13 nm, specific surface area ∼102 m2g-1) via the mechanochemically induced dehydration of boehmite (γ-AlOOH). High tohdite content (about 80%) is achieved upon mild ball milling (400 rpm for 48 h in a planetary ball mill) without process control agents. The addition of AlF3can promote the crystallization of tohdite by preventing the formation of the most stable α-Al2O3, resulting in the formation of almost phase-pure tohdite. The availability of easily accessible tohdite samples allowed comprehensive characterization by powder X-ray diffraction, total scattering analysis, solid-state NMR (1H and 27Al), N2-sorption, electron microscopy, and simultaneous thermal analysis (TG-DSC). Thermal stability evaluation of the samples combined with structural characterization evidenced a low-temperature transformation sequence: 5Al2O3·H2O → κ-Al2O3→ α-Al2O3. Surface characterization via DRIFTS, ATR-FTIR, D/H exchange experiments, pyridine-FTIR, and NH3-TPD provided further insights into the material properties. © 2022 American Chemical Society. All rights reserved.

« back