Segmentation of Static and Dynamic Atomic-Resolution Microscopy Data Sets with Unsupervised Machine Learning Using Local Symmetry Descriptors

Wang, N. and Freysoldt, C. and Zhang, S. and Liebscher, C.H. and Neugebauer, J.

Volume: Pages: 1-11
DOI: 10.1017/S1431927621012770
Published: 2021

We present an unsupervised machine learning approach for segmentation of static and dynamic atomic-resolution microscopy data sets in the form of images and video sequences. In our approach, we first extract local features via symmetry operations. Subsequent dimension reduction and clustering analysis are performed in feature space to assign pattern labels to each pixel. Furthermore, we propose the stride and upsampling scheme as well as separability analysis to speed up the segmentation process of image sequences. We apply our approach to static atomic-resolution scanning transmission electron microscopy images and video sequences. Our code is released as a python module that can be used as a standalone program or as a plugin to other microscopy packages. Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America.

« back