Publications

One-Dimensional Water Structures upon Cs Hydration on the Moiré Pattern of Graphitic ZnO

Hung, T.-C. and Morgenstern, K.

JOURNAL OF PHYSICAL CHEMISTRY C
Volume: 126 Pages: 15229-15234
DOI: 10.1021/acs.jpcc.2c05166
Published: 2022

Abstract
Water nucleation on alkali precovered metal-supported oxide surfaces is an important step in understanding water as one of the reactants in alkali-assisted heterogeneous catalysis. For instance, alkali metals as catalyst dopants enhance the water-gas shift reaction that catalyzes on ZnO-metal nanostructures. Here, we investigate the hydration of cesium on a Ag(111)-supported graphitic zinc oxide ultrathin film using scanning tunneling microscopy at (160 ± 30) K. Upon hydrating the pristine graphitic ZnO film, the water forms well-separated clusters on the hcp regions of the ZnO moiré pattern at water coverages below 85% ML. In the presence of cesium on the fcc regions of the ZnO moiré pattern, the water clusters coalesce across hcp regions at water coverages above ∼32% ML, forming unique one-dimensional water-Cs chains along the high-symmetry directions of the ZnO moiré pattern. Our study demonstrates that the alkali doping of an oxide surface alters the dimensionality of water structures redirecting it partially to other adsorption regions, possibly influencing its reactivity. © 2022 American Chemical Society.

« back