Integration of GaAs waveguides on a silicon substrate for quantum photonic circuits

Shadmani, A. and Thomas, R.A. and Liu, Z. and Papon, C. and Heck, M.J.R. and Volet, N. and Scholz, S. and Wieck, A.D. and Ludwig, Ar. and Lodahl, P. and Midolo, L.

Volume: 30 Pages: 37595-37602
DOI: 10.1364/OE.467920
Published: 2022

We report a method for integrating GaAs waveguide circuits containing self-assembled quantum dots on a Si/SiO2 wafer, using die-to-wafer bonding. The large refractive-index contrast between GaAs and SiO2 enables fabricating single-mode waveguides without compromising the photon-emitter coupling. Anti-bunched emission from individual quantum dots is observed, along with a waveguide propagation loss <7 dB/mm, which is comparable with the performance of suspended GaAs circuits. These results enable the integration of quantum emitters with different material platforms, towards the realization of scalable quantum photonic integrated circuits. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.

« back