Publications

Facet-Dependent Intrinsic Activity of Single Co3O4 Nanoparticles for Oxygen Evolution Reaction

Liu, Z. and Amin, H.M.A. and Peng, Y. and Corva, M. and Pentcheva, R. and Tschulik, K.

ADVANCED FUNCTIONAL MATERIALS
Volume: Pages:
DOI: 10.1002/adfm.202210945
Published: 2022

Abstract
Deciphering the influence of nanocatalyst morphology on their catalytic activity in the oxygen evolution reaction (OER), the limiting reaction in water splitting process, is essential to develop highly active precious metal-free catalysts, yet poorly understood. The intrinsic OER activity of Co3O4 nanocubes and spheroids is probed at the single particle level to unravel the correlation between exposed facets, (001) vs. (111), and activity. Single cubes with predominant (001) facets show higher activity than multi-faceted spheroids. Density functional theory calculations of different terminations and reaction sites at (001) and (111) surfaces confirm the higher activity of the former, expressed in lower overpotentials. This is rationalized by a change in the active site from octahedral to tetrahedral Co and the potential-determining step from *OH to *O for the cases with lowest overpotentials at the (001) and (111) surfaces, respectively. This approach enables the identification of highly active facets to guide shape-selective syntheses of improved metal oxide nanocatalysts for water oxidation. © 2022 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.

« back