Bright Electrically Controllable Quantum-Dot-Molecule Devices Fabricated by In Situ Electron-Beam Lithography

Schall, J. and Deconinck, M. and Bart, N. and Florian, M. and von Helversen, M. and Dangel, C. and Schmidt, R. and Bremer, L. and Bopp, F. and Hüllen, I. and Gies, C. and Reuter, D. and Wieck, A.D. and Rodt, S. and Finley, J.J. and Jahnke, F. and Ludwig, Ar. and Reitzenstein, S.

Volume: 4 Pages:
DOI: 10.1002/qute.202100002
Published: 2021

Self-organized semiconductor quantum dots represent almost ideal two-level systems, which have strong potential to applications in photonic quantum technologies. For instance, they can act as emitters in close-to-ideal quantum light sources. Coupled quantum dot systems with significantly increased functionality are potentially of even stronger interest since they can be used to host ultra-stable singlet-triplet spin qubits for efficient spin-photon interfaces and for deterministic photonic 2D cluster-state generation. An advanced quantum dot molecule (QDM) device is realized and excellent optical properties are demonstrated. The device includes electrically controllable QDMs based on stacked quantum dots in a pin-diode structure. The QDMs are deterministically integrated into a photonic structure with a circular Bragg grating using in situ electron beam lithography. A photon extraction efficiency of up to (24 ± 4)% is measured in good agreement with numerical simulations. The coupling character of the QDMs is clearly demonstrated by bias voltage dependent spectroscopy that also controls the orbital couplings of the QDMs and their charge state in quantitative agreement with theory. The QDM devices show excellent single-photon emission properties with a multi-photon suppression of (Formula presented.). These metrics make the developed QDM devices attractive building blocks for use in future photonic quantum networks using advanced nanophotonic hardware. © 2021 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

« back