Publications

Topological aspects responsible for recrystallization evolution in an IF-steel sheet – Investigation with cellular-automaton simulations

Traka, K. and Sedighiani, K. and Bos, C. and Galan Lopez, J. and Angenendt, K. and Raabe, D. and Sietsma, J.

COMPUTATIONAL MATERIALS SCIENCE
Volume: 198 Pages:
DOI: 10.1016/j.commatsci.2021.110643
Published: 2021

Abstract
A cellular automaton algorithm for curvature-driven coarsening is applied to a cold-rolled interstitial-free steel's microstructure - obtained through electron backscatter diffraction (EBSD). Recrystallization nucleation occurs naturally during the simulation, due to the highly heterogeneous and hence competitive growth among pre-existing (sub) grains. The spatial inhomogeneity of the subgrain growth that takes place derives from the large local variations of subgrain sizes and misorientations that comprise the prior deformed state. The results show that capillary-driven selective growth takes place to the extent that the prior elongated and deformed grains are replaced by equiaxed grains with no interior small-angle boundaries. Additionally, during the simulation certain texture components intensify and others vanish, which indicates that preferential growth occurs in a fashion that relates to the crystal orientations’ topology. The study of the early stages of recrystallization (i.e. nucleation) shows that the pre-existing subgrains that eventually recrystallize, exhibit certain topological characteristics at the prior deformed state. Successful nucleation occurs mostly for pre-existing matrix subgrains abutting shear bands or narrow deformation bands and particularly at regions where the latter intersect. © 2021 The Author(s)

« back