Publications

Specific heat and gap structure of a nematic superconductor: Application to FeSe

Islam, K.R. and Böker, J. and Eremin, I.M. and Chubukov, A.V.

PHYSICAL REVIEW B
Volume: 104 Pages:
DOI: 10.1103/PhysRevB.104.094522
Published: 2021

Abstract
We report the results of our in-depth analysis of spectroscopic and thermodynamic properties of a multiorbital metal, like FeSe, which first develops a nematic order and then undergoes a transition into a superconducting state, which coexists with nematicity. We analyze the angular dependence of the gap function and specific heat of such a nematic superconductor. We specifically address three issues: (i) the angular dependence of the gap in light of the competition between the nematicity-induced mixture and the orbital transmutation of low-energy excitations in the nematic state, (ii) the effect of nematicity on the magnitude of the jump of the specific heat at and the temperature dependence of below , and (iii) a potential transition at from an state to an state that breaks time-reversal symmetry. We consider two scenarios for a nematic order: scenario A, in which this order develops between and orbitals on hole and electron pockets, and scenario B, in which there is an additional component of the nematic order for fermions on the two electron pockets. ©2021 American Physical Society

« back