Publications

On the relation of structural disorder and thermoelastic properties in ZnGa2O4 and Zn1−xMgxGa2O4 (x ≈ 0.33)

Hirschle, C. and Schreuer, J. and Galazka, Z. and Ritter, C.

JOURNAL OF ALLOYS AND COMPOUNDS
Volume: 886 Pages:
DOI: 10.1016/j.jallcom.2021.161214
Published: 2021

Abstract
The cation distribution at room temperature, as well as elastic properties and thermal expansion of single crystal ZnGa2O4 (ZGO) and Zn1−xMgxGa2O4 (x ≈ 0.33; ZMGO) with spinel-type structure were studied in a wide temperature range using single crystal X-ray diffraction, neutron powder diffraction, inductive gauge dilatometry and resonant ultrasound spectroscopy. ZGO adopts an almost normal spinel structure, whereas ZMGO is significantly disordered. At room temperature, the elastic properties of ZMGO mostly fall between those of ZGO and MgGa2O4 (MGO). The temperature dependences of the thermoelastic properties of ZGO and ZMGO, as well as thermal expansion of ZGO reveal distinct signatures of glass-like transitions, which separate states in which the cation dynamics are fast enough to relax the cation order in response to temperature change in laboratory timescales from those in which they are not. In equilibrium, thermal expansion is increased in ZMGO, whereas the thermoelastic coefficients are decreased in both ZGO and ZMGO. The temperature range of the transition is significantly larger in ZGO compared to ZMGO and MGO. Trends within the elastic properties, thermoelastic properties, thermal expansion and the glass-like transition in the (Zn,Mg)Ga2O4 solid solution series are discussed based on the impact of inversion, structural disorder, bond character and in comparison to other spinels. © 2021 Elsevier B.V.

« back