Numerical Multi-level Model for Fibre Reinforced Concrete: Validation and Comparison with Fib Model Code

Neu, G.E. and Gudžulić, V. and Meschke, G.

Volume: 36 Pages: 365-376
DOI: 10.1007/978-3-030-83719-8_32
Published: 2022

In this contribution, a Finite Element modelling scheme for steel-fibre reinforced concrete (SFRC) is proposed with which the post-cracking response of fibre reinforced structural members can be predicted. In contrast to the common guidelines, the post-cracking response of SFRC is derived from the actual fibre properties instead of indirectly from bending tests. The numerical model is designed to directly track the influence of design parameters such as fibre type, fibre orientation, fibre content and concrete strength on the structural response. For this purpose, sub models on the single fibre level are combined into a crack bridging model, considering the fibre orientation and the fibre content, and are integrated into a finite element model for the purpose of numerical structural analysis. The predictive capability of the proposed numerical multi-level model for SFRC is systematically validated by means of test series performed on the fibre, crack and the structural level. The experimental study comprises pull-out tests of Dramix 3D fibres, uniaxial tension tests involving different fibre contents and fibre types as well as three-point bending tests on notched beams with 23 and 57 kg/m3 Dramix 3D fibres. Furthermore, the results are compared to the modelling approach presented in the fib model code 2010 and an inverse analysis approach. © 2022, RILEM.

« back