Publications

Non-uniform He bubble formation in W/W2C composite: Experimental and ab-initio study

Šestan, A. and Sreekala, L. and Markelj, S. and Kelemen, M. and Zavašnik, J. and Liebscher, C.H. and Dehm, G. and Hickel, T. and Čeh, M. and Novak, S. and Jenuš, P.

ACTA MATERIALIA
Volume: 226 Pages:
DOI: 10.1016/j.actamat.2021.117608
Published: 2022

Abstract
Tungsten-tungsten carbide (W/W2C) composites are considered as possible structural materials for future nuclear fusion reactors. Here, we report on the effect of helium (He) implantation on microstructure evolution of polycrystalline W/W2C composite consolidated by field-assisted sintering technique (FAST), homogenously implanted at room temperature with 1 MeV 4He+ ions at the fluence of 8 × 1016 ions cm−2 and annealed at 1873 K for 20 minutes. Samples were analysed by scanning and transmission electron microscopy to study the presence and size of He bubbles. Monomodal He bubbles in W (30-80 nm) are limited to point defects and grain boundaries, with a considerable void denuded zone (150 nm). Bubbles do not form in W2C, but at the W|W2C interface and are considerably larger (200-400 nm). The experimental observations on He behaviour and migration in W and W2C were assessed by density functional theory (DFT) calculations, suggesting He migration and accumulation in the composite are determined by the effective He-He binding in clusters, which will give rise to decohesion. In the presence of He clusters, the decohesion of bulk W into free surfaces is energetically highly favourable but not sufficient in the W2C; hence bubbles are only observed in W grains and interfaces and not within bulk W2C. © 2022

« back