Publications

Cementite decomposition in 100Cr6 bearing steel during high-pressure torsion: Influence of precipitate composition, size, morphology and matrix hardness

Kiranbabu, S. and Tung, P.-Y. and Sreekala, L. and Prithiv, T.S. and Hickel, T. and Pippan, R. and Morsdorf, L. and Herbig, M.

MATERIALS SCIENCE AND ENGINEERING A
Volume: 833 Pages:
DOI: 10.1016/j.msea.2021.142372
Published: 2022

Abstract
Premature failure of rail and bearing steels by White-Etching-Cracks leads to severe economic losses. This failure mechanism is associated with microstructure decomposition via local severe plastic deformation. The decomposition of cementite plays a key role. Due to the high hardness of this phase, it is the most difficult obstacle to overcome in the decaying microstructure. Understanding the mechanisms of carbide decomposition is essential for designing damage-resistant steels for industrial applications. We investigate cementite decomposition in the bearing steel 100Cr6 (AISI 52100) upon exposure to high-pressure torsion (maximum shear strain, Ƴmax = 50.2). Following-up on our earlier work on cementite decomposition in hardened 100Cr6 steel (Qin et al., Act. Mater. 2020 [1]), we now apply a modified heat treatment to generate a soft-annealed microstructure where spherical and lamellar cementite precipitates are embedded in a ferritic matrix. These two precipitate types differ in morphology (spherical vs. lamellar), size (spherical: 100–1000 nm diameter, lamellar: 40–100 nm thickness) and composition (Cr and Mn partitioning). We unravel the correlation between cementite type and its resistance to decomposition using multi-scale chemical and structural characterization techniques. Upon high-pressure torsion, the spherical cementite precipitates did not decompose, but the larger spherical precipitates (≥ 1 μm) deformed. In contrast, the lamellar cementite precipitates underwent thinning followed by decomposition and dissolution. Moreover, the decomposition behavior of cementite precipitates is affected by the type of matrix microstructure. We conclude that the cementite size and morphology, as well as the matrix mechanical properties are the predominating factors influencing the decomposition behavior of cementite. The compositional effects of Cr and Mn on cementite stability calculated by complementary density functional theory (DFT) calculations are minor in the current scenario. © 2021 Elsevier B.V.

« back