Benchmarking and validation of a combined CFD-optics solver for micro-scale problems

Münster, R. and Mierka, O. and Turek, S. and Weigel, T. and Ostendorf, A.

Volume: 3 Pages: 3070-3081
DOI: 10.1364/OSAC.399876
Published: 2020

In this work, we present a new approach for coupled CFD-optics problems that consists of a combination of a finite element method (FEM) based flow solver with a ray tracing based tool for optic forces that are induced by a laser. We combined the open-source computational fluid dynamics (CFD) package FEATFLOW with the ray tracing software of the LAT-RUB to simulate optical trap configurations. We benchmark and analyze the solver first based on a configuration with a single spherical particle that is subjected to the laser forces of an optical trap. The setup is based on an experiment that is then compared to the results of our combined CFD-optics solver. As an extension of the standard procedure, we present a method with a time-stepping scheme that contains a macro step approach. The results show that this macro time-stepping scheme provides a significant acceleration while still maintaining good accuracy. A second configuration is analyzed that involves non-spherical geometries such as micro rotors. We proceed to compare simulation results of the final angular velocity of the micro rotor with experimental measurements. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

« back