A new class of lightweight, stainless steels with ultra-high strength and large ductility

Moon, J. and Ha, H.-Y. and Kim, K.-W. and Park, S.-J. and Lee, T.-H. and Kim, S.-D. and Jang, J.H. and Jo, H.-H. and Hong, H.-U. and Lee, B.H. and Lee, Y.-J. and Lee, C. and Suh, D.-W. and Han, H.N. and Raabe, D. and Lee, C.-H.

Volume: 10 Pages:
DOI: 10.1038/s41598-020-69177-7
Published: 2020

Steel is the global backbone material of industrialized societies, with more than 1.8 billion tons produced per year. However, steel-containing structures decay due to corrosion, destroying annually 3.4% (2.5 trillion US$) of the global gross domestic product. Besides this huge loss in value, a solution to the corrosion problem at minimum environmental impact would also leverage enhanced product longevity, providing an immense contribution to sustainability. Here, we report a leap forward toward this aim through the development of a new family of low-density stainless steels with ultra-high strength (> 1 GPa) and high ductility (> 35%). The alloys are based on the Fe–(20–30)Mn–(11.5–12.0)Al–1.5C–5Cr (wt%) system and are strengthened by dispersions of nano-sized Fe3AlC-type κ-carbide. The alloying with Cr enhances the ductility without sacrificing strength, by suppressing the precipitation of κ-carbide and thus stabilizing the austenite matrix. The formation of a protective Al-rich oxide film on the surface lends the alloys outstanding resistance to pitting corrosion similar to ferritic stainless steels. The new alloy class has thus the potential to replace commercial stainless steels as it has much higher strength at similar formability, 17% lower mass density and lower environmental impact, qualifying it for demanding lightweight, corrosion resistant, high-strength structural parts. © 2020, The Author(s).

« back