Publications

3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction

Xiang, W. and Yang, N. and Li, X. and Linnemann, J. and Hagemann, U. and Ruediger, O. and Heidelmann, M. and Falk, T. and Aramini, M. and DeBeer, S. and Muhler, M. and Tschulik, K. and Li, T.

NATURE COMMUNICATIONS
Volume: 13 Pages:
DOI: 10.1038/s41467-021-27788-2
Published: 2022

Abstract
The three-dimensional (3D) distribution of individual atoms on the surface of catalyst nanoparticles plays a vital role in their activity and stability. Optimising the performance of electrocatalysts requires atomic-scale information, but it is difficult to obtain. Here, we use atom probe tomography to elucidate the 3D structure of 10 nm sized Co2FeO4 and CoFe2O4 nanoparticles during oxygen evolution reaction (OER). We reveal nanoscale spinodal decomposition in pristine Co2FeO4. The interfaces of Co-rich and Fe-rich nanodomains of Co2FeO4 become trapping sites for hydroxyl groups, contributing to a higher OER activity compared to that of CoFe2O4. However, the activity of Co2FeO4 drops considerably due to concurrent irreversible transformation towards CoIVO2 and pronounced Fe dissolution. In contrast, there is negligible elemental redistribution for CoFe2O4 after OER, except for surface structural transformation towards (FeIII, CoIII)2O3. Overall, our study provides a unique 3D compositional distribution of mixed Co-Fe spinel oxides, which gives atomic-scale insights into active sites and the deactivation of electrocatalysts during OER. © 2022, The Author(s).

« back