Variable chemical decoration of extended defects in Cu-poor C u2ZnSnS e4 thin films

Schwarz, T. and Redinger, A. and Siebentritt, S. and Peng, Z. and Gault, B. and Raabe, D. and Choi, P.-P.

Volume: 3 Pages:
DOI: 10.1103/PhysRevMaterials.3.035402
Published: 2019

We report on atom probe tomography studies of variable chemical decorations at extended defects in Cu-poor and Zn-rich Cu2ZnSnSe4 thin films. For a precursor film, which was co-evaporated at 320C, grain boundaries and dislocations are found enriched with Cu. Furthermore, Na out-diffusion from the soda-lime glass substrate occurs even at such a low temperature, resulting in Na segregation at defects. In contrast, stacking faults in the precursor film show clear Zn enrichment as well as Cu and Sn depletion. After an annealing step at 500C, we detect changes in the chemical composition of grain boundaries as compared to the precursor. Moreover, we measure an increase in the grain boundary excess of Na by one order of magnitude. We show that grain boundaries and dislocations in the annealed Cu2ZnSnSe4 film exhibit no or only slight variations in composition of the matrix elements. Thus, the effect of annealing is a homogenization of the chemical composition. © 2019 American Physical Society.

« back