Publications

Ultrafast Construction of Oxygen-Containing Scaffold over Graphite for Trapping Ni2+into Single Atom Catalysts

Liu, Z. and Li, S. and Yang, J. and Tan, X. and Yu, C. and Zhao, C. and Han, X. and Huang, H. and Wan, G. and Liu, Y. and Tschulik, K. and Qiu, J.

ACS NANO
Volume: 14 Pages: 11662-11669
DOI: 10.1021/acsnano.0c04210
Published: 2020

Abstract
Ultrafast construction of oxygen-containing scaffold over graphite for trapping Ni2+ into single atom catalysts (SACs) was developed and presented by a one-step electrochemical activation technique. The present method for Ni SACs starts with graphite foil and is capable of achieving ultrafast preparation (1.5 min) and mass production. The defective oxygen featuring the strong electronegativity enables primarily attracting Ni2+ ions and stabilizing Ni atoms via Ni-O6 coordination instead of conventional metal-C or metal-N. In addition, the oxygen defects for trapping are tunable through altering the applied voltage or electrolyte, further altering the loading of Ni atoms, indicative of enhanced oxygen evolution activity. This simple and ultrafast electrochemical synthesis is promising for the mass and controllable production of oxygen-coordinated Ni SACs, which exhibit good performance for oxygen evolution reaction. © 2020 American Chemical Society.

« back