Tuning Coordination Geometry of Nickel Ketoiminates and Its Influence on Thermal Characteristics for Chemical Vapor Deposition of Nanostructured NiO Electrocatalysts

Zywitzki, D. and Taffa, D.H. and Lamkowski, L. and Winter, M. and Rogalla, D. and Wark, M. and Devi, A.

Volume: 59 Pages: 10059-10070
DOI: 10.1021/acs.inorgchem.0c01204
Published: 2020

Nickel-based nanostructured materials have gained widespread attention, particularly for energy-related applications. Employing chemical vapor deposition (CVD) for NiO necessitates suitable nickel precursors that are volatile and stable. Herein, we report the synthesis and characterization of a series of new nickel β-ketoiminato complexes with different aliphatic and etheric side chain substitutions, namely, bis(4-(isopropylamino)-pent-3-en-2-onato)nickel(II) ([Ni(ipki)2], 1), bis(4-(2-methoxyethylamino)pent-3-en-2-onato)nickel(II) ([Ni(meki)2], 2), bis(4-(2-ethoxyethylamino)pent-3-en-2-onato)nickel(II) ([Ni(eeki)2], 3), bis(4-(3-methoxy-propylamino)-pent-3-en-2-onato)nickel(II) ([Ni(mpki)2], 4), and bis(4-(3-ethoxypropylamino)pent-3-en-2-onato)nickel(II) ([Ni(epki)2], 5). These compounds have been thoroughly characterized with regard to their purity and identity by means of nuclear magnetic resonance spectroscopy (NMR) and electron impact mass spectrometry (EI-MS). Contrary to other transition metal β-ketoiminates, the imino side chain strongly influences the structural geometry of the complexes, which was ascertained via single-crystal X-ray diffraction (XRD). As a result, the magnetic momenta of the molecules also differ significantly as evidenced by the magnetic susceptibility measurements employing Evan's NMR method in solution. Thermal analysis revealed the suitability of these compounds as new class of precursors for CVD of Ni containing materials. As a representative precursor, compound 2 was evaluated for the CVD of NiO thin films on Si(100) and conductive glass substrates. The as-deposited nanostructured layers were stoichiometric and phase pure NiO as confirmed by XRD, Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). X-ray photoelectron spectroscopy (XPS) indicated the formation of slightly oxygen-rich surfaces. The assessment of NiO films in electrocatalysis revealed promising activity for the oxygen evolution reactions (OER). The current densities of 10 mA cm-2 achieved at overpotentials ranging between 0.48 and 0.52 V highlight the suitability of the new Ni complexes in CVD processes for the fabrication of thin film electrocatalysts. Copyright © 2020 American Chemical Society.

« back