Synthesis of plasmonic Fe/Al nanoparticles in ionic liquids

Schmitz, A. and Meyer, H. and Meischein, M. and Garzón Manjón, A. and Schmolke, L. and Giesen, B. and Schlüsener, C. and Simon, P. and Grin, Y. and Fischer, R.A. and Scheu, C. and Ludwig, Al. and Janiak, C.

Volume: 10 Pages: 12891-12899
DOI: 10.1039/d0ra01111h
Published: 2020

Bottom-up and top-down approaches are described for the challenging synthesis of Fe/Al nanoparticles (NPs) in ionic liquids (ILs) under mild conditions. The crystalline phase and morphology of the metal nanoparticles synthesized in three different ionic liquids were identified by powder X-ray diffractometry (PXRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and fast Fourier transform (FFT) of high-resolution TEM images. Characterization was completed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) for the analysis of the element composition of the whole sample consisting of the NPs and the amorphous background. The bottom-up approaches resulted in crystalline FeAl NPs on an amorphous background. The top-down approach revealed small NPs and could be identified as Fe4Al13 NPs which in the IL [OPy][NTf2] yield two absorption bands in the green-blue to green spectral region at 475 and 520 nm which give rise to a complementary red color, akin to appropriate Au NPs. © 2020 The Royal Society of Chemistry.

« back