Publications

Spinodal decomposition versus classical γ′ nucleation in a nickel-base superalloy powder: An in-situ neutron diffraction and atomic-scale analysis

Collins, D.M. and D'Souza, N. and Panwisawas, C. and Papadaki, C. and West, G.D. and Kostka, A. and Kontis, P.

ACTA MATERIALIA
Volume: 200 Pages: 959-970
DOI: 10.1016/j.actamat.2020.09.055
Published: 2020

Abstract
Contemporary powder-based polycrystalline nickel-base superalloys inherit microstructures and properties that are heavily determined by their thermo-mechanical treatments during processing. Here, the influence of a thermal exposure to an alloy powder is studied to elucidate the controlling formation mechanisms of the strengthening precipitates using a combination of atom probe tomography and in-situ neutron diffraction. The initial powder comprised a single-phase supersaturated γ only; from this, the evolution of γ′ volume fraction and lattice misfit was assessed. The initial powder notably possessed elemental segregation of Cr and Co and elemental repulsion between Ni, Al and Ti with Cr; here proposed to be a precursor for subsequent γ to γ′ phase transformations. Subsolvus heat treatments yielded a unimodal γ′ distribution, formed during heating, with evidence supporting its formation to be via spinodal decomposition. A supersolvus heat treatment led to the formation of this same γ′ population during heating, but dissolves as the temperature increases further. The γ′ then reprecipitates as a multimodal population during cooling, here forming by classical nucleation and growth. Atom probe characterisation provided intriguing precipitate characteristics, including clear differences in chemistry and microstructure, depending on whether the γ′ formed during heating or cooling. © 2020 Acta Materialia Inc.

« back