Publications

Solvent-Controlled CO 2 Reduction by a Triphos-Iron Hydride Complex

Iffland, L. and Khedkar, A. and Petuker, A. and Lieb, M. and Wittkamp, F. and Van Gastel, M. and Roemelt, M. and Apfel, U.-P.

ORGANOMETALLICS
Volume: 38 Pages: 289-299
DOI: 10.1021/acs.organomet.8b00711
Published: 2019

Abstract
The selective reduction of CO 2 is of high interest toward future applications as a C1-building block. Therefore, metal complexes that allow for the formation of specific CO 2 reduction products under distinct reaction conditions are necessary. A detailed understanding of the CO 2 reduction pathways on a molecular level is, however, required to help in designing catalytic platforms for efficient CO 2 conversion with specific product formation. Reported herein is a unique example of a solvent-controlled reduction of CO 2 using a Triphos-based iron hydride complex. In THF, CO 2 reduction selectively leads to CO formation, whereas experiments in acetonitrile exclusively afford formate, HCOO - . In order to explain the experimental findings, theoretical calculations of the reaction pathways were performed and further demonstrate the importance of the applied solvent for a selective reduction of CO 2 . © Copyright © 2019 American Chemical Society.

« back