Short-range order in face-centered cubic VCoNi alloys

Kostiuchenko, T. and Ruban, A.V. and Neugebauer, J. and Shapeev, A. and Körmann, F.

Volume: 4 Pages:
DOI: 10.1103/PhysRevMaterials.4.113802
Published: 2020

Concentrated solid solutions including the class of high entropy alloys (HEAs) have attracted enormous attention recently. Among these alloys a recently developed face-centered cubic (fcc) equiatomic VCoNi alloy revealed extraordinary high yield strength, exceeding previous high-strength fcc CrCoNi and FeCoNiCrMn alloys. Significant lattice distortions had been reported in the VCoNi solid solution. There is, however, a lack of knowledge about potential short-range order (SRO) and its implications for most of these alloys. We performed first-principles calculations and Monte Carlo simulations to compute the degree of SRO for fcc VCoNi, namely, by utilizing the coherent-potential approximation in combination with the generalized perturbation method as well as the supercell method in combination with recently developed machine-learned potentials. We analyze the chemical SRO parameters as well as the impact on other properties such as relaxation energies and lattice distortions. © 2020 authors.

« back