Quasi-Fermi-Level Splitting of Cu -Poor and Cu -Rich CuIn S2 Absorber Layers

Lomuscio, A. and Rödel, T. and Schwarz, T. and Gault, B. and Melchiorre, M. and Raabe, D. and Siebentritt, S.

Volume: 11 Pages:
DOI: 10.1103/PhysRevApplied.11.054052
Published: 2019

Cu(In,Ga)S2-based solar cells are interesting tandem partners for Si or chalcopyrite solar cells, but suffer from a low open-circuit voltage. Recently, record efficiencies have been achieved by using higher growth temperatures for the absorber. To understand the effect of higher growth temperatures, we investigate the structural and electronic properties of CuInS2 absorbers. By investigating the absorber alone as opposed to complete solar cells, we can separate changes in the absorber from effects of the interface properties. We show that the quasi-Fermi-level splitting, which indicates the maximum open-circuit voltage an absorber is capable of, increases with higher growth temperature. The quasi-Fermi-level splitting is limited by a deep defect, the concentration of which decreases with higher growth temperature and is less prominent in Cu-rich films. Thus, we demonstrate that the open-circuit voltage of CuInS2-based solar cells is limited to below 850 mV by the absorber itself, independent of the interface. In contrast to the changes in the electronic properties, the structural properties are rather independent of temperature within the range investigated but are significantly influenced by the composition. © 2019 authors. Published by the American Physical Society.

« back