Publications

Photogeneration of a single electron from a single Zeeman-resolved light-hole exciton with preserved angular momentum

Kuroyama, K. and Larsson, M. and Chang, C.Y. and Muramoto, J. and Heya, K. and Fujita, T. and Allison, G. and Valentin, S.R. and Ludwig, Ar. and Wieck, A.D. and Matsuo, S. and Oiwa, A. and Tarucha, S.

PHYSICAL REVIEW B
Volume: 99 Pages:
DOI: 10.1103/PhysRevB.99.085203
Published: 2019

Abstract
Quantum state transfer from a single photon to a single electron following selection rules can only occur for a spin-resolved light-hole excitation in GaAs quantum dots; however, these phenomena have yet to be experimentally realized. Here, we report on single-shot readout of a single electron spin via the Zeeman-resolved light-hole excitation using an optical spin blockade method in a GaAs quantum dot and a Pauli spin blockade method in a double GaAs quantum dot. The observed photoexcitation probability strongly depends on the photon polarization, an indication of angular momentum transfer from a single photon to an electron. Our demonstration will open a pathway to further investigation of fundamental quantum physics and applications of quantum networking technology. © 2019 American Physical Society.

« back