Publications

Near Transform-Limited Quantum Dot Linewidths in a Broadband Photonic Crystal Waveguide

Pedersen, F.T. and Wang, Y. and Olesen, C.T. and Scholz, S. and Wieck, A.D. and Ludwig, Ar. and Löbl, M.C. and Warburton, R.J. and Midolo, L. and Uppu, R. and Lodahl, P.

ACS PHOTONICS
Volume: 7 Pages: 2343-2349
DOI: 10.1021/acsphotonics.0c00758
Published: 2020

Abstract
Planar nanophotonic structures enable broadband, near-unity coupling of emission from quantum dots embedded within, thereby realizing ideal single-photon sources. The efficiency and coherence of the single-photon source is limited by charge noise, which results in the broadening of the emission spectrum. We report suppression of the noise by fabricating photonic crystal waveguides in a gallium arsenide membrane containing quantum dots embedded in a p-i-n diode. Local electrical contacts in the vicinity of the waveguides minimize the leakage current and allow fast electrical control (≈4 MHz bandwidth) of the quantum dot resonances. Resonant linewidth measurements of 51 quantum dots coupled to the photonic crystal waveguides exhibit near transform-limited emission over a 6 nm wide range of emission wavelengths. Importantly, the local electrical contacts allow independent tuning of multiple quantum dots on the same chip, which together with the transform-limited emission are key components in realizing multiemitter-based quantum information processing. Copyright © 2020 American Chemical Society.

« back