Publications

Microscopic Insight into Electron-Induced Dissociation of Aromatic Molecules on Ice

Auburger, P. and Kemeny, I. and Bertram, C. and Ligges, M. and Bockstedte, M. and Bovensiepen, U. and Morgenstern, K.

PHYSICAL REVIEW LETTERS
Volume: 121 Pages:
DOI: 10.1103/PhysRevLett.121.206001
Published: 2018

Abstract
We use scanning tunneling microscopy, photoelectron spectroscopy, and ab initio calculations to investigate the electron-induced dissociation of halogenated benzene molecules adsorbed on ice. Dissociation of halobenzene is triggered by delocalized excess electrons attaching to the π∗ orbitals of the halobenzenes from where they are transferred to σ∗ orbitals. The latter orbitals provide a dissociative potential surface. Adsorption on ice sufficiently lowers the energy barrier for the transfer between the orbitals to facilitate dissociation of bromo- and chloro- but not of flourobenzene at cryogenic temperatures. Our results shed light on the influence of environmentally important ice particles on the reactivity of halogenated aromatic molecules. © 2018 American Physical Society.

« back