Publications

Metastability alloy design

Raabe, D. and Li, Z. and Ponge, D.

MRS BULLETIN
Volume: 44 Pages: 266-272
DOI: 10.1557/mrs.2019.72
Published: 2019

Abstract
This article reviews the concept of metastability in alloy design. While most materials are thermodynamically metastable at some stage during synthesis and service, we discuss here cases where metastable phases are not coincidentally inherited from processing, but rather are engineered. Specifically, we aim at compositional (partitioning), thermal (kinetics), and microstructure (size effects and confinement) tuning of metastable phases so that they can trigger athermal transformation effects when mechanically, thermally, or electromagnetically loaded. Such a concept works both at the bulk scale and also at a spatially confined microstructure scale, such as at lattice defects. In the latter case, local stability tuning works primarily through elemental partitioning to dislocation cores, stacking faults, interfaces, and precipitates. Depending on stability, spatial confinement, misfit, and dispersion, both bulk and local load-driven athermal transformations can equip alloys with substantial gain in strength, ductility, and damage tolerance. Examples include self-organized metastable nanolaminates, austenite reversion steels, metastable medium- A nd high-entropy alloys, as well as steels and titanium alloys with martensitic phase transformation and twinning-induced plasticity effects. © 2019 Materials Research Society.

« back