Manipulation of matter by electric and magnetic fields: Toward novel synthesis and processing routes of inorganic materials

Guillon, O. and Elsässer, C. and Gutfleisch, O. and Janek, J. and Korte-Kerzel, S. and Raabe, D. and Volkert, C.A.

Volume: 21 Pages: 527-536
DOI: 10.1016/j.mattod.2018.03.026
Published: 2018

The use of external electric and magnetic fields for the synthesis and processing of inorganic materials such as metals and ceramics has seen renewed interest in recent years. Electromagnetic energy can be utilized in different ways to improve or accelerate phase formation and stabilization, chemical ordering, densification and coarsening of particle-based materials (pore elimination and grain growth), and mechanical deformation (plasticity and creep). In these new synthesis and processing routes, the resulting microstructures and macroscopic material behavior are determined by the interaction of the applied fields with defects such as single or clustered point defects, dislocation networks, and interfaces. Multiscale experimental investigations and modeling are necessary to unveil the mechanisms underlying this field-assisted manipulation of matter. © 2018 Elsevier Ltd

« back