Interaction between laser radiation and metallic powder of 316L austenitic steel during selective laser melting

Mutke, C. and Geenen, K. and Röttger, A. and Theisen, W.

Volume: 145 Pages: 337-346
DOI: 10.1016/j.matchar.2018.08.061
Published: 2018

During selective laser melting (SLM), a complex heat state develops that leads to a characteristic crystallography and microstructure of the processed materials. Depending on the geometry of the processed part, most scan tracks of a new layer, so-called hatches, are located above a dense substrate or already solidified structures whereas others are located above loose powder. This is, inter alia, the case for overhanging structures. Attributable to the lower thermal conductivity of loose powder, temperature gradients and cooling rates of the melt pool differentiate in these areas, resulting in a different microstructural build-up. In this work, the microstructure and the crystallographic orientation of grade 316L austenitic stainless steel processed by SLM was investigated to understand the interaction between the laser radiation and the metallic powder during SLM-processing and to investigate the remelting of a track on a previous SLM-densified track. Single and multiple tracks on a loose bulk powder substrate, as well as single tracks on a dense substrate plate, were generated. A parameter study revealed that high energy densities are necessary to build continuous tracks on a loose bulk powder substrate. In addition, the amount of adhered particles, which are sintered on the fully melted and solidified tracks, is determined in comparison to the melted powder because the sintered particles strongly influence the surface roughness. To understand the microstructure development and, particularly, the influence of adjacent hatches during SLM-processing, investigations on the resulting microstructure and crystallographic orientation of a single track and two connected multiple tracks were carried out. During SLM processing of the tracks, the substrate plate and the solidified structures influence the temperature gradient and cooling rate of the melt pool, thus directionally solidified and elongated grains occur. Furthermore, the solidification is characterized by an epitaxial growth due to a distinct thermal gradient between the melt pool and the surrounding elements. © 2018 Elsevier Inc.

« back