Publications

Image inverting, topography and feature size manipulation using organic/inorganic bi-layer lift-off for nanoimprint template

Si, S. and Hoffmann, M.

MICROELECTRONIC ENGINEERING
Volume: 197 Pages: 39-44
DOI: 10.1016/j.mee.2018.05.005
Published: 2018

Abstract
A fast and cost efficient approach to fabricate multiple NIL templates with inverse image tone, modified topography and tunable feature sizes is presented. The nanopatterns from the negative master is inverted to positive structures in the produced NIL templates using a UV-curable bi-layer lift-off process which excludes high temperature baking. The bi-layer consisting of a 150 nm sacrificial layer of pure organic resist and a 200 nm patterning resist of inorganic/organic composite is employed. The topography on the new NIL templates are in square layout which is generated from a single master with circular nanoholes. The feature sizes on the master are shrunken down to sub-200 nm (120/200/250/300 nm) in a preciously controllable manner. Nanostructures up to 150 mm wafer scale are transferred by soft UV-NIL using an ambient center-to-edge scheme. The feature sizes of openings in the patterning layer can be precisely and controllably tuned taking advantage of an intermediate template with nanopyramids that is produced from the master. The organic sacrificial layer is descummed and underetched by oxygen plasma. Furthermore, 40 nm Chromium is evaporated and the sacrificial layer along with the patterning layer is lifted off by wet chemical stripper TechniStrip P1316. Silicon etching using the Chromium etch-mask is engaged in for smooth and vertical sidewalls for NIL templates. © 2018 Elsevier B.V.

« back