Publications

Electrochemical CO2 and Proton Reduction by a Co(dithiacyclam) Complex

Iffland, L. and Siegmund, D. and Apfel, U.-P.

ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE
Volume: 646 Pages: 746-753
DOI: 10.1002/zaac.201900356
Published: 2020

Abstract
While [Ni(cyclam)]2+ and [Ni(dithiacyclam)]2+ complexes were shown to be potent electrocatalysts for the CO2 conversion, their respective Co complexes hitherto received only little attention. Herein, we report on the CoII complexes of the cyclam and dithiacyclam platform, describe their synthesis and reveal their rich solvent dependent coordination chemistry. We show that sulfur implementation into the cyclam moiety leads to a switch from a low spin CoII complex in [Co(cyclam)]2+ to a high spin form in [Co(dithiacyclam)]2+. Notably, while both complexes are capable to perform the reduction of CO2 to CO, H2 formation is generally preferred. Along this line, the complexes were shown to enable proton reduction from acetic acid. However, in comparison to [Co(cyclam)]2+, the altered electronics make [Co(dithiacyclam)]2+ complexes prone to deposit on the glassy carbon working electrode over time leading to an overall low faradaic efficiency for the reduction of protons or CO2. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

« back