Publications

Development of Multilayer Sinter Cladding of Cold Work Tool Steel on Hadfield Steel Plates for Wear-Resistant Applications

Farayibi, P.K. and Blüm, M. and Theisen, W. and Weber, S.

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
Volume: 28 Pages: 1833-1847
DOI: 10.1007/s11665-019-03942-2
Published: 2019

Abstract
Machinery components used for mining and mineral processing activities are often subjected to high impact loads and wear which have placed demands for the development of materials with high resistance to dynamic loads and aggressive wear conditions. In this study, a multilayered cladding of high alloyed cold work tool steel (X245VCrMo9-4), interlayered with Hadfield steel (X120Mn12) plates, which was also used as substrate using super-solidus liquid-phase sintering technique was investigated. A stack of the cold work tool steel powder was prepared with interlayered X120Mn12 steel plates in an alumina crucible at tap density with the substrate placed on it and was sintered in a vacuum furnace at 1250 °C at a heating rate of 10 K/min, held for 30 min under a nitrogen atmosphere at 0.08 MPa and furnace-cooled. Sample from the as-sintered cladding was subjected to austenization at 1000 °C, quenched in oil and tempered at 150 °C for 2 h. Samples were subjected to microstructural examination using optical and scanning electron microscopy. The microstructural investigations were supplemented by hardness and impact wear tests. Computational thermodynamics was used to support experimental findings. The results revealed that a near-net densification of the sintered X245 was achieved with 99.93 ± 0.01% density. The sintered X245 was characterized by a dispersion of vanadium carbonitride precipitates, especially at the grain boundaries. The heat-treated X245 sample had the highest hardness of 680 ± 7 HV30 due to the matrix of tempered martensitic microstructure when compared to as-sintered with hardness of 554 ± 2 HV30. The X245/X120 interface was characterized by diffusion of Cr, Mo, Mn and C, which resulted in metallurgical bonding between the cladded materials. The impact wear resistance of the sintered X245 was eight times that of the X120; hence, a tough and wear-resistant tool is anticipated when the X120 work hardened in service. © 2019, ASM International.

« back