Defect phases–thermodynamics and impact on material properties

Korte-Kerzel, S. and Hickel, T. and Huber, L. and Raabe, D. and Sandlöbes-Haut, S. and Todorova, M. and Neugebauer, J.

Volume: Pages:
DOI: 10.1080/09506608.2021.1930734
Published: 2021

Two approaches in materials physics have proven immensely successful in alloy design: First, thermodynamic and kinetic descriptions for tailoring and processing alloys to achieve a desired microstructure. Second, crystal defect manipulation to control strength, formability and corrosion resistance. However, to date, the two concepts remain essentially decoupled. A bridge is needed between these powerful approaches to achieve a single conceptual framework. Considering defects and their thermodynamic state holistically as ‘defect phases’, provides a future materials design strategy by jointly treating the thermodynamic stability of both, the local crystalline structure and the distribution of elements at defects. Here, we suggest that these concepts are naturally linked by defect phase diagrams describing the coexistence and transitions of defect phases. Construction of these defect phase diagrams will require new quantitative descriptors. We believe such a framework will enable a paradigm shift in the description and design of future engineering materials. © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

« back