Publications

Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases

Duan, J. and Senger, M. and Esselborn, J. and Engelbrecht, V. and Wittkamp, F. and Apfel, U.-P. and Hofmann, E. and Stripp, S.T. and Happe, T. and Winkler, M.

NATURE COMMUNICATIONS
Volume: 9 Pages:
DOI: 10.1038/s41467-018-07140-x
Published: 2018

Abstract
The unmatched catalytic turnover rates of [FeFe]-hydrogenases require an exceptionally efficient proton-transfer (PT) pathway to shuttle protons as substrates or products between bulk water and catalytic center. For clostridial [FeFe]-hydrogenase CpI such a pathway has been proposed and analyzed, but mainly on a theoretical basis. Here, eleven enzyme variants of two different [FeFe]-hydrogenases (CpI and HydA1) with substitutions in the presumptive PT-pathway are examined kinetically, spectroscopically, and crystallographically to provide solid experimental proof for its role in hydrogen-turnover. Targeting key residues of the PT-pathway by site directed mutagenesis significantly alters the pH-activity profile of these variants and in presence of H2 their cofactor is trapped in an intermediate state indicative of precluded proton-transfer. Furthermore, crystal structures coherently explain the individual levels of residual activity, demonstrating e.g. how trapped H2O molecules rescue the interrupted PT-pathway. These features provide conclusive evidence that the targeted positions are indeed vital for catalytic proton-transfer. © 2018, The Author(s).

« back