Publications

Correlations between optical properties and Voronoi-cell area of quantum dots

Löbl, M.C. and Zhai, L. and Jahn, J.-P. and Ritzmann, J. and Huo, Y. and Wieck, A.D. and Schmidt, O.G. and Ludwig, Ar. and Rastelli, A. and Warburton, R.J.

PHYSICAL REVIEW B
Volume: 100 Pages:
DOI: 10.1103/PhysRevB.100.155402
Published: 2019

Abstract
A semiconductor quantum dot (QD) can generate highly indistinguishable single photons at a high rate. For application in quantum communication and integration in hybrid systems, control of the QD optical properties is essential. Understanding the connection between the optical properties of a QD and the growth process is therefore important. Here, we show for GaAs QDs, grown by infilling droplet-etched nanoholes, that the emission wavelength, the neutral-to-charged exciton splitting, and the diamagnetic shift are strongly correlated with the capture-zone area, an important concept from nucleation theory. We show that the capture-zone model applies to the growth of this system even in the limit of a low QD density in which atoms diffuse over μm distances. The strong correlations between the various QD parameters facilitate preselection of QDs for applications with specific requirements on the QD properties; they also suggest that a spectrally narrowed QD distribution will result if QD growth on a regular lattice can be achieved. © 2019 American Physical Society.

« back