Publications

Comprehensive investigation of the microstructure-property relationship of differently manufactured Co–Cr–C alloys at room and elevated temperature

Krell, J. and Röttger, A. and Theisen, W.

WEAR
Volume: 444-445 Pages:
DOI: 10.1016/j.wear.2019.203138
Published: 2020

Abstract
The purpose of this study was to investigate the influence of the microstructure on sliding wear and hardness of four different Co–Cr–C alloys at room and elevated temperature. Different microstructures were produced by applying three different processes. The hardness, hot hardness and wear loss at room temperature of these alloys correlate strongly with the carbide volume content. In sliding wear tests against an Al2O3 ball, abrasive wear occurs at room temperature. The size or geometric arrangement of the carbides or metal matrix plays a minor role at room temperature. At 600 °C the wear behaviour changes due to the softening matrix. In alloys with small free matrix path lengths, the highest wear rates occur due to micro-fatigue and micro-cracking. In hypoeutectic alloys with a high free matrix path length, the carbides lose their effectiveness due to the lack of support by the matrix. In these alloys, wear is dominated by the properties of the matrix. A hypereutectic casting alloy with large primary carbides shows the best wear results, as the carbides support themselves due to their size and retain their wear-reducing effect. © 2019 Elsevier B.V.

« back