Publications

Comparison between optical coherence tomography imaging and histological sections of peripheral nerves

Carolus, A.E. and Möller, J. and Hofmann, M.R. and van de Nes, J.A.P. and Welp, H. and Schmieder, K. and Brenke, C.

JOURNAL OF NEUROSURGERY
Volume: 134 Pages: 270-277
DOI: 10.3171/2019.8.JNS191278
Published: 2021

Abstract
OBJECTIVE Optical coherence tomography (OCT) is an imaging technique that uses the light-backscattering properties of different tissue types to generate an image. In an earlier feasibility study the authors showed that it can be applied to visualize human peripheral nerves. As a follow-up, this paper focuses on the interpretation of the images obtained. METHODS Ten different short peripheral nerve specimens were retained following surgery. In a first step they were examined by OCT during, or directly after, surgery. In a second step the nerve specimens were subjected to histological examination. Various steps of image processing were applied to the OCT raw data acquired. The improved OCT images were compared with the sections stained by H & E. The authors assigned the structures in the images to the various nerve components including perineurium, fascicles, and intrafascicular microstructures. RESULTS The results show that OCT is able to resolve the myelinated axons. A weighted averaging filter helps in identifying the borders of structural features and reduces artifacts at the same time. Tissue-remodeling processes due to injury (perineural fibrosis or neuroma) led to more homogeneous light backscattering. Anterograde axonal degeneration due to sharp injury led to a loss of visible axons and to an increase of light-backscattering tissue as well. However, the depth of light penetration is too small to allow generation of a complete picture of the nerve. CONCLUSIONS OCT is the first in vivo imaging technique that is able to resolve a nerve’s structures down to the level of myelinated axons. It can yield information about focal and segmental pathologies. © AANS 2021, except where prohibited by US copyright law

« back