Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface

Ding, D. and Appel, M.H. and Javadi, A. and Zhou, X. and Löbl, M.C. and Söllner, I. and Schott, R. and Papon, C. and Pregnolato, T. and Midolo, L. and Wieck, A.D. and Ludwig, Ar. and Warburton, R.J. and Schröder, T. and Lodahl, P.

Volume: 11 Pages:
DOI: 10.1103/PhysRevApplied.11.031002
Published: 2019

Waveguide-based spin-photon interfaces on the GaAs platform have emerged as a promising system for a variety of quantum information applications directly integrated into planar photonic circuits. The coherent control of spin states in a quantum dot can be achieved by applying circularly polarized laser pulses that may be coupled into the planar waveguide vertically through radiation modes. However, proper control of the laser polarization is challenging since the polarization is modified through the transformation from the far field to the exact position of the quantum dot in the nanostructure. Here, we demonstrate polarization-controlled excitation of a quantum-dot electron spin and use that to perform coherent control in a Ramsey interferometry experiment. The Ramsey interference reveals an inhomogeneous dephasing time of 2.2±0.1 ns, which is comparable to the values so far only obtained in bulk media. We analyze the experimental limitations in spin initialization fidelity and Ramsey contrast and identify the underlying mechanisms. © 2019 American Physical Society.

« back