Publications

Coherence of a Driven Electron Spin Qubit Actively Decoupled from Quasistatic Noise

Nakajima, T. and Noiri, A. and Kawasaki, K. and Yoneda, J. and Stano, P. and Amaha, S. and Otsuka, T. and Takeda, K. and Delbecq, M.R. and Allison, G. and Ludwig, Ar. and Wieck, A.D. and Loss, D. and Tarucha, S.

PHYSICAL REVIEW X
Volume: 10 Pages:
DOI: 10.1103/PhysRevX.10.011060
Published: 2020

Abstract
The coherence of electron spin qubits in semiconductor quantum dots suffers mostly from low-frequency noise. During the past decade, efforts have been devoted to mitigate such noise by material engineering, leading to substantial enhancement of the spin dephasing time for an idling qubit. However, the role of the environmental noise during spin manipulation, which determines the control fidelity, is less understood. We demonstrate an electron spin qubit whose coherence in the driven evolution is limited by high-frequency charge noise rather than the quasistatic noise inherent to any semiconductor device. We employ a feedback-control technique to actively suppress the latter, demonstrating a π-flip gate fidelity as high as 99.04±0.23% in a gallium arsenide quantum dot. We show that the driven-evolution coherence is limited by the longitudinal noise at the Rabi frequency, whose spectrum resembles the 1/f noise observed in isotopically purified silicon qubits. © 2020 authors. Published by the American Physical Society.

« back