Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels

Ding, R. and Yao, Y. and Sun, B. and Liu, G. and He, J. and Li, T. and Wan, X. and Dai, Z. and Ponge, D. and Raabe, D. and Zhang, C. and Godfrey, A. and Miyamoto, G. and Furuhara, T. and Yang, Z. and van der Zwaag, S. and Chen, H.

Volume: 6 Pages:
DOI: 10.1126/sciadv.aay1430
Published: 2020

For decades, grain boundary engineering has proven to be one of the most effective approaches for tailoring the mechanical properties of metallic materials, although there are limits to the fineness and types of microstructures achievable, due to the rapid increase in grain size once being exposed to thermal loads (low thermal stability of crystallographic boundaries). Here, we deploy a unique chemical boundary engineering (CBE) approach, augmenting the variety in available alloy design strategies, which enables us to create a material with an ultrafine hierarchically heterogeneous microstructure even after heating to high temperatures. When applied to plain steels with carbon content of only up to 0.2 weight %, this approach yields ultimate strength levels beyond 2.0 GPa in combination with good ductility (>20%). Although demonstrated here for plain carbon steels, the CBE design approach is, in principle, applicable also to other alloys. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

« back