Publications

Bearable local stress of high-strength steel fiber reinforced concrete [Aufnehmbare Teilflächenspannung von hochfestem Stahlfaserbeton]

Plückelmann, S. and Breitenbücher, R. and Smarslik, M. and Mark, P.

BETON- UND STAHLBETONBAU
Volume: 114 Pages: 653-662
DOI: 10.1002/best.201900015
Published: 2019

Abstract
Bearable local stress of high-strength steel fiber reinforced concrete. In the case of partial-area loading, compressive forces are transmitted into concrete members only over a limited area. For plain concretes and conventionally reinforced concretes, numerous investigations have already been carried out analysing the load-bearing behavior under partial-area loading. Due to the tendency towards higher concrete strengths and the increasingly widespread use of steel fibers in recent years, it becomes also necessary to investigate the performance of high-strength steel fiber reinforced concrete under partial-area loading. The article describes experimental tests on high-strength steel fiber reinforced concrete under partial-area loading with spatial and plane load distribution. Different area ratios and concretes with different fiber types and contents as well as fiber cocktails were considered. On the basis of the test results, a calculation approach is proposed for the determination of the bearable ultimate local stresses. It is shown that by referring to the flexural tensile strength, instead of the compressive strength as in the case of common calculation approaches, a more precise approximation of the ultimate local stresses for high-strength steel fiber reinforced concrete is possible. © 2019, Ernst und Sohn. All rights reserved.

« back