Publications

Bearable Local Stress of High-Strength SFRC

Plückelmann, S. and Breitenbücher, R. and Smarslik, M. and Mark, P.

RILEM BOOKSERIES
Volume: 30 Pages: 176-188
DOI: 10.1007/978-3-030-58482-5_16
Published: 2021

Abstract
In the case of partial-area loading, compressive forces are transmitted into concrete members only over a limited area. For plain concretes and conventionally reinforced concretes, numerous investigations have already been carried out analyzing the load-bearing behavior under partial-area loading. Due to the tendency towards higher concrete strengths and the increasingly widespread use of steel fibers in recent years, it becomes also necessary to investigate the performance of high-strength steel fiber reinforced concrete (SFRC) under partial-area loading. This paper describes experimental tests on high-strength steel fiber reinforced concrete under partial-area loading with spatial and plane load distribution. Different area ratios and concretes with different fiber types and contents as well as fiber cocktails were considered. On the basis of the test results, a calculation approach is proposed for the determination of the bearable ultimate local stress. It is shown that by referring to the flexural tensile strength, instead of the compressive strength, as in the case of common calculation approaches, a more precise approximation of the ultimate local stresses for high-strength steel fiber reinforced concrete is possible. © 2021, RILEM.

« back