Atomic-scale insights into surface species of electrocatalysts in three dimensions

Li, T. and Kasian, O. and Cherevko, S. and Zhang, S. and Geiger, S. and Scheu, C. and Felfer, P. and Raabe, D. and Gault, B. and Mayrhofer, K.J.J.

Volume: 1 Pages: 300-305
DOI: 10.1038/s41929-018-0043-3
Published: 2018

The topmost atomic layers of electrocatalysts determine the mechanism and kinetics of reactions in many important industrial processes, such as water splitting, chlor-electrolysis or fuel cells. Optimizing the performance of electrocatalysts requires a detailed understanding of surface-state changes during the catalytic process, ideally at the atomic scale. Here, we use atom probe tomography to reveal the three-dimensional structure of the first few atomic layers of electrochemically grown iridium oxide, an efficient electrocatalyst for the oxygen evolution reaction. We unveil the formation of confined, non-stoichiometric Ir-O species during oxygen evolution. These species gradually transform to IrO2, providing improved stability but also a decrease in activity. Additionally, electrochemical growth of oxide in deuterated solutions allowed us to trace hydroxy-groups and water molecules present in the regions of the oxide layer that are favourable for the oxygen evolution and iridium dissolution reactions. Overall, we demonstrate how tomography with near-atomic resolution advances the understanding of complex relationships between surface structure, surface state and function in electrocatalysis. © 2018 The Author(s).

« back