Publications

Assessment of a Dual Kalman Filter-Based Approach for Input/Output Estimation in an Aluminum Plate

Sattarifar, A. and Nestorović, T.

LECTURE NOTES IN CIVIL ENGINEERING
Volume: 127 Pages: 584-593
DOI: 10.1007/978-3-030-64594-6_57
Published: 2021

Abstract
Vulnerability of structures to damage during their service time brings up the necessity of design and implementation of an intelligent procedure to assure the health of the structure. In the sight of this requisite, current work deals with extending the capability of a dual Kalman filter (DKF) state estimation scheme to assist vibration-based health monitoring methods. This is met by estimating the response of the structure for locations at which a sensor cannot be placed. The capability of the DKF method in the estimation of states of a linear system with an unknown input has been presented in various recent works. In this paper, a DKF approach incorporated with a reduced order structural model (in this case an aluminum plate) is utilized to obtain an estimation of applied force and the response of the structure in terms of acceleration, velocity, and displacement. These estimations are based on measured accelerations at a limited number of points on the aluminum plate as well as the state-space model of the dynamic system. Numerical simulations and experimental works are performed to obtain the mentioned datasets. To assess the robustness of the method concerning various conditions, the effect of the frequency, as well as type of the function of the input force on the validity of the method, is presented. Moreover, it is shown to what extent the number of selected modes in model reduction procedure can influence the accuracy of the DKF technique. © 2021, Springer Nature Switzerland AG.

« back