Publications

Advanced broadband MEMS infrared emitter based on high-temperature-resistant nanostructured surfaces and packaging solutions for harsh environments

Biermann, S. and Magi, A. and Sachse, P. and Hoffmann, M. and Wedrich, K. and Müller, L. and Koppert, R. and Ortlepp, T. and Baldauf, J.

PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING
Volume: 11279 Pages:
DOI: 10.1117/12.2545119
Published: 2020

Abstract
An advanced infrared emitter, consisting of a non-periodic silicium-microstructure and a platinium-nano-composition, which enables extraordinary highly emission intensities is presented. A spectral broadband emission coefficient ϵ of nearly 1 is achieved. The foundation of the emitter is a MEMS hot plate design containing a high temperature stable molybdenum silicide resistance heater layer embedded in a multilayer membrane consisting of silicon nitride and silicon oxide. The temperature resistance of the silicon-platinum micro-nanostructure up to 800 °C is secured by a SiO2 protection layer. The long-term stability of the spectral behavior at 750 °C has been demonstrated over 10,000 h by FTIR measurements. The low thermal mass of the multilayer MEMS membrane leads to a time constant of 28 ms which enables high chopper frequencies. A precondition for long term stability under rough conditions is a real hermetic housing. High temperature stable packaging technologies for infrared MEMS components were developed. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.

« back