A canonical rate-independent model of geometrically linear isotropic gradient plasticity with isotropic hardening and plastic spin accounting for the Burgers vector

Ebobisse, F. and Hackl, K. and Neff, P.

Volume: 31 Pages: 1477-1502
DOI: 10.1007/s00161-019-00755-5
Published: 2019

In this paper, we propose a canonical variational framework for rate-independent phenomenological geometrically linear gradient plasticity with plastic spin. The model combines the additive decomposition of the total distortion into non-symmetric elastic and plastic distortions, with a defect energy contribution taking account of the Burgers vector through a dependence only on the dislocation density tensor Curlp giving rise to a non-symmetric nonlocal backstress, and isotropic hardening response only depending on the accumulated equivalent plastic strain. The model is fully isotropic and satisfies linearized gauge invariance conditions, i.e., only true state variables appear. The model satisfies also the principle of maximum dissipation which allows to show existence for the weak formulation. For this result, a recently introduced Korn’s inequality for incompatible tensor fields is necessary. Uniqueness is shown in the class of strong solutions. For vanishing energetic length scale, the model reduces to classical elasto-plasticity with symmetric plastic strain εp and standard isotropic hardening. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.

« back